Cingulate cortex: a closer look at its gut-related functional topography.
نویسندگان
چکیده
Earlier studies have documented activation of the cingulate cortex during gut related sensory-motor function. However, topography of the cingulate cortex in relationship to various levels of visceromotor sensory stimuli and gender is not completely elucidated. The aim was to characterize and compare the activation topography of the cingulate cortex in response to 1) subliminal, 2) perceived rectal distensions, and 3) external anal sphincter contraction (EASC) in males and females. We studied 18 healthy volunteers (ages 18-35 yr; 10 women, 8 men) using functional MRI blood-oxygenation-level-dependent technique. We obtained 11 axial slices (voxel vol. 2.5-6.0 x 2.5 x 2.5 mm(3)) through the cingulate cortex during barostat-controlled subliminal, liminal, and supraliminal nonpainful rectal distensions as well as EASC. Overall, for viscerosensation, the anterior cingulate cortex exhibited significantly more numbers of activated cortical voxels for all levels of stimulations compared with the posterior cingulate cortex (P < 0.05). In contrast, during EASC, activity in the posterior cingulate was larger than in the anterior cingulate cortex (P < 0.05). Cingulate activation was similar during EASC in males and females (P = 0.58), whereas there was a gender difference in anterior cingulate activation during liminal and supraliminal stimulations (P < 0.05). In females, viscerosensory cortical activity response was stimulus-intensity dependent. Intestinal viscerosensation and EASC induce different patterns of cingulate cortical activation. There may be gender differences in cingulate cortical activation during viscerosensation. In contrast to male subjects, females exhibit increased activity in response to liminal nonpainful stimulation compared with subliminal stimulation suggesting differences in cognition-related recruitment.
منابع مشابه
Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.
BACKGROUND AND AIMS Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim...
متن کاملConnectivity-based parcellation of human cingulate cortex and its relation to functional specialization.
Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, mag...
متن کاملDoes it look painful or disgusting? Ask your parietal and cingulate cortex.
Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related func...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملThe sight of others' pain modulates motor processing in human cingulate cortex.
Neuroimaging evidence has shown that a network including cingulate cortex and bilateral insula responds to both felt and seen pain. Of these, dorsal anterior cingulate and midcingulate areas are involved in preparing context-appropriate motor responses to painful situations, but it is unclear whether the same holds for observed pain. Participants in this functional magnetic resonance imaging st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005